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SYNOPSIS 

Analysis of isothermal crystallization data of PET and PPS was carried out using Avrami 
and Tobin models. The models gave fractional values of exponent n and the standard 
deviation varied between 1 and 4%. No improvement in the standard deviation could be 
obtained even after incorporating the nucleation rate in these models. The Hillier model 
gave a good fit only to the isothermal crystallization data of PET. A simple model considering 
primary and secondary crystallization has been proposed. The model is verified using iso- 
thermal crystallization data of PPS. 0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

The mechanical and physical properties of the 
molded and extruded products of crystalline poly- 
mers are governed by the supermolecular morphol- 
ogy, which, in turn, is controlled by the crystalli- 
zation process. In the processing of polymers, such 
as fiber spinning, injection molding, and extrusion, 
crystallization occurs under nonisothermal condi- 
tions.”’ Thus, nonisothermal studies are used to 
elucidate structure development in the melt pro- 
cessing of polymers and isothermal studies are used 
for investigating the mechanistic aspects of crys- 
tallization. The study of the kinetics of crystalliza- 
tion is necessary for optimizing the process condi- 
tions and establishing the structure-property cor- 
relations in polymers. 

THEORETICAL BACKGROUND 

Crystallization of polymers involves two consecutive 
processes: the formation of nuclei and their subse- 
quent growth. When a polymer is supercooled by 
lowering its temperature below the polymer melting 
temperature ( T,,,) , nuclei appear throughout the 
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mass. The nuclei may appear instantaneously at the 
beginning of the process (heterogeneous nucleation) 
or they may appear in the untransformed phase 
throughout the process (homogeneous nucleation). 
The growth of the nuclei then occurs in one, two, 
or three dimensions, giving rise to rods, discs, or 
spheres. To describe quantitatively the macroscopic 
development of crystallinity in polymers, the fol- 
lowing equation obtained from the classical theory 
of Avarmi for phase transformation kinetics is often 
a ~ p l i e d ~ , ~ :  

1 - X ,  = exp(-ktn) (1) 

Here X ,  is the degree of crystallinity; t ,  the time; k, 
the growth rate constant; and exponent n, represents 
the nucleation mechanism and growth dimensions. 
The value of n can be any positive integer between 
1 and 4. 

The Avrami model [ eq. ( 1 ) J takes into account 
the formation of nuclei and their subsequent growth. 
However, in most of the cases, the experimental sit- 
uation is complicated by different phenomena taking 
place during the course of crystallization and inter- 
pretation of the experimental data using the Avrami 
model leads to fractional values of the Avrami ex- 
ponent ( n) and deviations of the experimental data 
at longer crystallization times. These observations 
are generally a t t r i b ~ t e d ~ . ~  to the simplified assump- 
tions made in the Avrami model: 
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Constant radial growth rate 
Constant density and shape of the growing nu- 

Uniqueness of the nucleation 
No secondary crystallization 
No volume change during phase transforma- 

clei 

tion/ crystallization. 

Because of these assumptions, eq. ( 1 ) leads to frac- 
tional values of n that cannot be explained on any 
physical basis. Thus, many workers5-" developed 
models by relaxing one or several of the above as- 
sumptions. These models took into account a vari- 
able growth rate, a mixed mode of nucleation, a 
change in the density of the growing nuclei, the time 
dependence of the nucleation rate, and secondary 
crystallization. To explain the fractional values of 
n ,  Banks and Sharpies' considered a mixed mode 
of nucleation where spherulitic growth occurs si- 
multaneously from the nuclei originating instanta- 
neously and sporadically with time. For a mixed 
mode of nucleation, eq. ( 1) can be rewritten as 

where kl and kz are the two rate constants for het- 
erogeneous and homogeneous nucleation, respec- 
tively. Equation ( 2 )  represents two processes oc- 
curring simultaneously with different integer values 
of n .  

To improve the Avrami model, Tobin' proposed 
a new expression for growth site impingement and 
expressed X, in terms of a nonlinear integral equa- 
tion. The zeroth-order expression is given by 

XJ(1 - X,) = kt" ( 3 )  

A similar equation was proposed by Rabesiaka 
and Kovacs" and it was found to give a good fit to 
the experimental data for X, up to 0.9. For small t ,  
i.e., small values of X,, eq. (3)  approximates eq. (1) 
very well. At long times, however, X, approaches 
unity faster in the case of the Avrami model com- 
pared with the Tobin model. Since experimental 
values deviate from the Avrami model at long times, 
Tobin considered it as positive evidence for his the- 
ory. However, Eder et al.' attributed the deviations 
at  long times to the distribution in the activation 
times and not to the growth site impingement. 

Aggarwal et al.7 attributed the deviations of the 
experimental data from the values predicted using 
the Avrami equation to the secondary crystallization 
occurring within the spherulites. They assumed that 

the secondary crystallization proceeds as a first-or- 
der process. From the microscopic studies, they 
measured the number of spherulites as a function 
of time and found that the nucleation rate can also 
be represented by a first-order process: 

N = No( 1 - etlt") ( 4 )  

where No is the maximum number of nuclei at the 
end and t, is the nucleation time constant. By taking 
into consideration these two factors, they have 
shown that the crystallization process can be de- 
scribed using four parameters, namely: 

time constant for primary crystallization 
time constant for secondary crystallization 
time constant for nucleation and extent of sec- 
ondary crystallization. 

The two-range equation considered by Danusso 
et a1.' approximates eq. ( 4 ) .  Consideration of the 
nucleation rate in the Avrami theory leads to the 
following equation 7:  

Upon integration, one obtains 

1 - X, = exp[-kf(t)]  (6)  

where 

for n = 2  ( 7 )  

for n = 3  (8) 

Here, k = k'No. It is important to note that eq. (5) 
neglects the swallowing of potential nucleation sites 
by the growing spherulites. From eqs. ( 7) and ( 8 ) ,  
one obtains two well-known limiting cases: hetero- 
geneous nucleation ( t  B t,) and homogeneous nu- 
cleation ( t  t,). 

Many w ~ r k e r s ~ ~ ~ ~ ' ~ ~ ' ~  attributed the deviation at 
long times to the slow secondary crystallization pro- 
cess. Two types of secondary crystallization pro- 
cesses are envisaged. One is the secondary/post- 
Avarami crystallization due to the crystallization of 
the interspherulitic region. Another model proposed 
by Hillier lo and Price l3 is the slow secondary crys- 
tallization occurring within a spherulite. In the Hil- 
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lier model, spherulites are assumed to grow at a con- 
stant rate and the volume occluded within a spher- 
ulite is given by the exponential form of eq. ( 1 ) . 
Once a volume element is included in a spherulite, 
crystallinity is assumed to jump from zero to X ( p ,  
co ) . Then, the slow secondary crystallization process 
occurs within the occluded volume and it is assumed 
to follow eq. (9)  : 

Because of the secondary crystallization, density 
of the growing spherulite changes with time. The 
total crystallinity at  time t is given by 

X ( p ,  co) and X (  s ,  0 0 )  represent the total crystal- 
linity due to primary and secondary crystallization, 
respectively. kp and ks are the rate constants for the 
primary and secondary processes, respectively. 

All these models were found to give a good fit to 
the experimental data when compared with the 
Avrami model. But critical analysis of the experi- 
mental data using different models has not been un- 
dertaken yet. Therefore, in the present study, dif- 
ferent models reported in the literature were used 
for checking their validity to isothermal crystalli- 
zation of poly (ethylene terephthalate) (PET) and 
poly ( phenylene sulfide ) ( PPS ) . Finally, a simple 
model taking into account primary and secondary 
crystallization is proposed in this work and it is 
verified using the isothermal crystallization data 
of PPS. 

EXPERIMENTAL 

The isothermal crystallization kinetics of PET and 
PPS were followed using a Perkin-Elmer DSC-2 dif- 
ferential scanning calorimeter equipped with a 
thermal analysis data station. The samples used for 
the present investigation were two grades of PET, 
namely, blow-molding grade (PETB ) with intrinsic 
viscosity ( IV)  of 1.08 and injection-molding grade 
(PETI) with IV of 0.8 supplied by Cenka Plastics 
(India), and PPS supplied by Philips Petroleum 
(USA). The crystallization exotherms were obtained 
over a temperature range of 190-215°C for PET and 
230-255°C for PPS. Before recording the exotherms, 
the samples were heated to 300°C and held at  that 

temperature for 2 min to ensure complete melting 
of the polymer. The samples were then cooled at  a 
rate of 16O"C/min to a predetermined temperature 
(T,) at which the exothermic crystallization peak 
was recorded. The extent of crystallization at any 
time was determined from point-by-point area mea- 
surements of the crystallization peak, assuming that 
the fractional crystallization at  a given time is pro- 
portional to the ratio of the crystallization peak area 
up to that time to the total peak area. Results were 
reproducible and no noticeable degradation was ob- 
served during the experiments. 

COMPUTATIONAL PROCEDURE 

Marquard's nonlinear multivariable regression 
method" was used to analyze isothermal crystalli- 
zation data of PETI, PETB, and PPS and to the 
various models examined in this work. Wherever 
analytical solutions are not possible, integrals were 
approximated using a 20-point Gauss quadrature 
formula. Marquard's method optimizes the param- 
eters by minimizing the sum of squares of all devia- 
tions between the experimental and the calculated 
extent of crystallization. The standard deviation re- 
ported here is calculated from 

Here 1 is the number of data points and p is the 
number of model parameters. 

RESULTS AND DISCUSSION 

Figure 1 shows the isothermal crystallization data 
of PETI. The untransformed phase ( 1 - X , )  is plot- 
ted against the logarithm of time at different crys- 
tallization temperatures ( T,) . The observed char- 
acteristic sigmoidal shape of these isotherms is a 
very important feature of the crystallization process. 
There is ah initial induction time (not shown in Fig. 
1 ) followed by an accelerated crystallization process 
that reaches a pseudoequilibrium level of crystallin- 
ity depending on the T,. 

The solid lines in Figure 1 represent eq. (1) for 
n = 2 and k = In 2/(t0.5)n and it gives a good fit up 
to 70% conversion for all the isothermal crystalli- 
zation temperatures considered in this work. It is 
well known that crystallization isotherms can be su- 
perimposed by shifting them along the time axis. 
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log t 

Figure 1 
( 1 )  190°C; ( 2 )  195°C; ( 3 )  200°C; ( 4 )  210°C. Solid lines: eq. ( 1 )  and n = 2. 

Amorphous fraction vs. time for PETI at different crystallization temperatures: 

t1to.g 

Figure 2 
peratures (190, 195, 200, and 210°C). Solid line: eq. ( 2 )  and n = 2. 

Amorphous fraction vs. reduced time for PETI at different crystallization tem- 
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Superimposing of isotherms was done using viz., 
the time at which 50% of crystallization has taken 
place. Thus, eq. (1) reduces to 

(1 - X , )  = exp[-ln 2(t/t0.5)n] (11) 

Equation (11) leads to a single master curve with a 
single reduced variable dependent on the tempera- 
ture. Superposition of crystallization isotherms of 
PETI is shown in Figure 2 and the solid line in Fig- 
ure 2 represents eq. (11) for n = 2. All isotherms 
collapse into a single curve, indicating that the crys- 
tallization mechanism is the same for all Tc’s. De- 
viation from the Avrami theory is observed at  above 
70% conversion. Similarly, crystallization isotherms 
coalesce into a single master curve for PETB and 
PPS (see Figs. 3 and 4). Again, n = 2 gives a good 
fit up to 70% conversion for PETB. Therefore, a 
plausible structure is a fibrillar and/or lamellar 
growth of the polymer crystals. It is important to 
note that above 70% conversion PETB isotherms, 
unlike PETI and PPS, did not coalesce into a single 
curve, i.e., depending on the T,, the crystallization 
mechanism changes at 70% conversion. Hence, eq. 
( 2 ) cannot describe the complete crystallization 
process for PETB. In the case of PPS, a good fit 
could be obtained with n = 2.5. 

Marquard’s nonlinear regression method was ap- 
plied to eq. ( 1 ) and optimum parameters of k and n 
were obtained. These are given in Table I for PETI, 
PETB, and PPS. The u given in Table I represents 
the standard deviation and varies from 1 to 4%. As 
T, increases, the crystallization rate is expected to 
decrease and the rate is zero when T, = T,. Hence, 
the growth rate constant, k ,  as shown in Table I, 
decreases as T, increases. For all T,‘s, fractional val- 
ues of n were obtained. The value of n increases 
with T, for PETI and PETB. However, no such 
trend is observed for PPS and the average value of 
n is 2.13. 

Using eq. ( 2 )  proposed by Banks and Sharpies' 
for a mixed mode of nucleation, the analysis of the 
experimental data did not result in either integer 
values of n or any improvement in the standard 
deviation. This is in agreement with Banks and 
Sharples’ observation that eq. ( 2 )  could not give a 
good fit to their experimental data. In fact, the op- 
timum value of kz obtained with the regression 
method is zero for most of the cases. When kz = 0, 
eq. ( 2)  reduces to eq. ( 1). 

The results of the analysis using eq. ( 3 )  proposed 
by Tobin‘ are tabulated in Table I. Even with the 
Tobin model, fractional values of n were obtained. 

Figure 3 
temperatures ( 190, 195, 205, and 215OC). Solid line: eq. ( 2 )  and n = 2. 

Amorphous fraction vs. reduced time for PETB at different crystallization 
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Figure 4 
peratures (235, 245, 250, and 255°C). Solid line: eq. (2 )  and n = 2.5. 

Amorphous fraction vs. reduced time for PPS at different crystallization tem- 

An important feature of the Tobin model is that the 
values of n were consistently greater than those ob- 
tained with the Avrami model and n varies between 
1.8 and 3.45 (see Table I ) .  For both models, the 
standard deviation is approximately same. However, 
there is a slight decrease in Q for PETB with the 
Tobin model. 

Since the fractional values of n cannot be ex- 
plained on any physical basis, many workers7," de- 
veloped models considering a variable growth rate, 
nucleation rate, and secondary crystallization. These 
models are used here for integer values of n. We 
shall now consider the effect of incorporating the 
nucleation rate in the Avrami and Tobin models. 

Table I Crystallization Parameters Calculated Using Avrami and Tobin Models 

Avrami Model Tobin Model 

Polymer TC k n (I k n (I 

PET1 190 
195 
200 
210 

PETB 190 
195 
205 
215 

PPS 235 
245 
250 
255 

0.635 
0.371 
0.170 
0.093 

0.392 
0.313 
0.201 
0.031 

29.470 
4.210 
0.850 
0.170 

1.83 
1.76 
1.77 
1.76 

1.11 
1.18 
1.33 
1.95 

2.22 
2.01 
2.13 
2.17 

2.61 
1.42 
1.20 
1.13 

3.73 
4.31 
3.98 
0.57 

1.83 
1.92 
1.76 
1.60 

0.968 
0.434 
0.130 
0.058 

0.427 
0.300 
0.143 
0.009 

315.300 
16.300 
1.520 
0.130 

2.84 
2.65 
2.71 
2.59 

1.84 
1.94 
2.18 
3.03 

3.37 
3.01 
3.40 
3.43 

0.72 
1.80 
2.01 
2.08 

1.73 
1.49 
1.97 
2.84 

1.14 
1.46 
1.06 
1.45 
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Table I1 Crystallization Parameters Calculated Using Avrami and Tobin Models with Nucleation 

Avrami Model Tobin Model 

Polymer Tc k tn U k tn U 

PETI 190 
195 
200 
210 

PETB 190 
195 
205 
215 

PPS 235 
245 
250 
255 

0.613 
0.325 
0.137 
0.071 

0.195 
0.163 
0.097 
0.029 

26.200 
4.400 
0.990 
0.240 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0.024 
0.011 
0.077 
0.196 

3.00 
2.79 
2.37 
2.53 

9.55 
8.68 
6.46 
0.76 

1.66 
1.88 
1.59 
1.44 

7.000 
1.740 
0.980 
0.300 

0.368 
0.287 
0.212 
0.010" 

23.400' 
16.200" 
2.420' 
0.290" 

2.150 
1.120 
2.560 
1.820 

0.000 
0.000 
0.000 
0.000 

0.020 
0.001 
0.170 
0.396 

0.90 
2.27 
2.37 
2.60 

2.29 
1.60 
1.00 
2.85 

1.42 
1.47 
1.34 
1.75 

'n = 3. 

Incorporating the nucleation rate in the Tobin model 
leads to the following simplified equation: 

&/(I - X t )  = k f ( t )  (12) 

f ( t )  is given by eqs. ( 7 )  and (8) for n = 2 and 3, 
respectively. Marquard's regression method was ap- 
plied to eqs. ( 6 )  and (9)  for integer values of n. 
Table I1 shows the results. With the Avrami model, 
nucleation time is found to be zero for PETI and 
PETB. However, finite values of t, were obtained 
for PETI and PPS with the Tobin model, but there 
is no particular trend in t, values and the standard 
deviation did not improve even with the incorpo- 
ration of the nucleation rate in the Avrami and To- 
bin models. 

Considering the primary and secondary crystal- 
lization as discussed by Hillier, '' the crystallization 
parameters were calculated and the results are pre- 
sented in Table 111. The standard deviation de- 
creased for PETI and PETB and the average value 
of X ( p ,  co) is 0.45 and 0.64, respectively, for PETI 
and PETB. In fact, X ( p ,  co ) is expected to increase 
with T,, but no such trend was observed. It was ob- 
served that kp,  unlike ks,  is a strong function of tem- 
perature. The experimental data for PETB crystal- 
lized at 195°C is compared with the predicted values 
based on the Hillier model in Figure 5. Although the 
Hillier model could reduce the standard deviation 
for both the PET samples, in the case of PPS, con- 
sistent results could not be obtained with n = 2. 
Even with n = 3, CT did not improve and X( p ,  co ) 
of 0.255 (see Table 111) is not expected for a fast 
crystallizing polymer such as PPS. It is probable 
that the Hillier model is not suitable for PPS. 

As indicated earlier, the Hillier model takes into 
account only the secondary crystallization occurring 
within a spherulite and not the interspherulitic 
crystallization. Therefore, a simple model is pro- 
posed here considering inter- and intraspherulitic 
crystallization. The primary crystallization is as- 
sumed to follow 

The mechanism of secondary crystallization can be 
described either by considering it as reorganization 
of the amorphous phase where crystallinity is lin- 
early related to the logarithm of time or by consid- 
ering it as a relaxation process where logarithm of 

Table I11 Crystallization Parameters Calculated 
Using the Hillier Model 

PETI 190 
(n = 2) 195 

200 
210 

PETB 190 
(n = 2) 195 

205 
215 

PPS 235 
(n = 3) 245 

250 
255 

0.809 0.821 
0.687 0.992 
0.297 0.685 
0.144 0.452 

0.672 0.353 
0.394 0.282 
0.193 0.250 
0.036 0.417 

331.000 9.670 
44.500 3.800 

2.640 1.990 
0.310 1.000 

0.817 
0.450 
0.406 
0.447 

0.537 
0.620 
0.659 
0.747 

0.266 
0.203 
0.296 
0.255 

1.21 
0.35 
0.60 
0.78 

0.85 
0.41 
0.40 
0.40 

1.30 
2.07 
0.97 
1.17 
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Figure 5 
T, = 195°C). 

Comparison of the Hillier model predictions with the experimental data (PETB, 

crystallinity is linearly proportional to the time. 
However, experimental evidence suggests the latter 
me~hanism.'~ Therefore, it is used here. Mathe- 
matically, it is represented by 

Equation (14) represents the total secondary crys- 
tallization due to inter- and intraspherulitic crys- 
tallization and does not distinguish between these 
two processes. to in eq. ( 14) is the time for the onset 
of secondary crystallization and it is not known a 
priori from DSC exotherms. However, Rybnikar 14,15 

observed the onset of secondary crystallization by 
carrying out the experiments with dilatometry. By 
combining eqs. ( 13) and ( 14) ) we obtain 

The main advantage of eq. (15) is that no integral 
has to be evaluated like in the Hillier model and it 
is simple to use even for nonisothermal studies. Ta- 
ble IV and Figure 6 show the results obtained with 
eq. (15) for PPS. The standard deviation decreases 
(see Table IV) compared with the Hillier model and 
X ( p ,  co) is 0.6. As expected, the time for the onset 
of secondary crystallization to increases with T,. It 
is important to note that to is less than tp& (time 
at  which crystallization rate is maximum). It means 
that secondary crystallization starts before the 
crystallization rate reaches maximum. This is in 
contrast to Kamal and Chu's4 assumption that sec- 
ondary crystallization starts after tp for polyethylene 
samples. This could be possibly due to different 
crystallization mechanisms of polyethylene and 
PPS. Further experiments are needed to verify the 
onset of secondary crystallization and to validate 
the proposed model in this work. 

Table IV Crystallization Parameters for PPS Calculated Using the Proposed Model 

PPS 235 26.03 7.74 0.60 7.1 (10) 1.05 
(n = 2) 245 6.01 2.90 0.66 17.7 (22) 0.66 

250 1.26 1.64 0.59 40.3 (50) 0.61 
255 0.24 0.83 0.64 74.5 (104) 0.66 
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5 

log t ) S  

Figure 6 
T, = 255°C). 

Comparison of proposed model predictions with the experimental data (PPS, 

CONCLUSIONS 
Isothermal crystallization kinetics of PET and PPS 
was analyzed using the Avrami, Tobin, and Hillier 
models. Avrami and Tobin models gave fractional 
values of n and the value of n in the Tobin model 
was found to be greater than that obtained with the 
Avrami model. Even incorporation of nucleation rate 
in the Avrami and Tobin models did not reduce the 
standard deviation. The Hillier model was found to 
give good agreement for PETI and PETB. A simple 
model taking into account primary and intra- and 
interspherulitic crystallization was proposed. The 
model was tested with PPS and a good fit was ob- 
tained. The time for the onset of secondary crys- 
tallization is found to be less than tp&. However, 
the proposed model did not give a good fit to PETI 
and PETB when compared with the Hillier model. 
Therefore, different models have to be employed to 
describe the crystallization mechanism of different 
polymers. 

The authors wish to thank Dr. V. L. Shingankuli and Mrs. 
Bulakh for carrying out part of the experimental work. 
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